Senin, 10 Oktober 2016

TUGAS TERSTRUKTUR TATAPMUKA KE-6 DAN KE 7


3. Jelaskan mengapa suatu sikloheksana terdisubstitusi-cis-1,3 lebih stabil dari pada struktur-trans-padanan nya.

jawab:

apabila kedua substituent 1,3 satu terhadap yang lain pada suatu cincin siklohekana, maka cis – isomer lebih stabil dari pada trans – isomer, Karena kedua substituent dalam 1,3 – isomer, dapat berposisi ekuatorial.  Dalam trans-1,3- isomer, 1 gugus terpaksa berposisi Cis-1,3 dimetilsikloheksana.Cis1,3 lebih stabil dari pada sturktur trans1,3 karena kedua substituen dalam cis1,3 dapat berposisi ekuatorial. 

Sedangkan trans1,3 satu gugus terpaksa berposisi aksial. Dalam hal ini kestabilan suatu isomer baik itu cis ataupun trans tergantung pada posisi substituennya. Jika cis1,3 lebih stabil dikarenakan posisi ekuatorial hal ini disebabkan bahwa pada posisi ekuatrial efek tolakan steriknya lebih kecil dibandingkan posisi aksial pada trans1,3 sehingga cis 1,3 lebih stabil. 


4. Tuliskan Proyeksi Fischer untuk semua konfigurasi yang mungkin dari 2,3,4-pentanatriol. Tunjukkan pasangan-pasangan enantiomernya.
jawab:





Minggu, 09 Oktober 2016

RESUME PERTEMUAN KE 7


STEREOKIMIA
Stereokimia merupakan sebuah subdisiplin kimia, melibatkan studi tentang penataan ruang relatif atom yang membentuk struktur molekul dan manipulasi mereka. Cabang penting dari stereokimia adalah studi tentang molekul kiral.
1.            1.       Konfigurasi mutlak dan relatif
A.    Konfigurasi mutlak

Sampai tahun 1956, konfigurasi mutlak tidak ada senyawa optik aktif dikenal. Sebaliknya, konfigurasi ditugaskan relatif terhadap standar, gliseraldehida., Yang awalnya dipilih oleh E. Fischer (sekitar 1885) untuk tujuan menghubungkan konfigurasi karbohidrat. Fischer sewenang-wenang ditugaskan 3a konfigurasi untuk dekstrorotatori gliseraldehida, yang dikenal sebagai D - (+) - gliseraldehida. The levorotatory enansiomer, 3b, ditunjuk sebagai L - (-) - gliseraldehida. (Jika Anda tidak yakin tentang terminologi D dan L, atau aturan untuk menulis Fischer rumus proyeksi, ulasan Bagian 5-3C dan 5-4.)


Susunan keruangan keempat gugus yang terikat pada pusat kiral disebut Konfigurasi Mutlak, yang dinyatakan dengan konfigurasi R/S. Penentuan konfigurasi R/S molekul kiral pada umumnya didasrkan sistem perioritas yang dikembangkan oleh Cahn-Ingold-Prelog. Penentuan dengan metode ini memerlukan daya nalar keruangan atau gugus-gugus di sekitar pusa kiral yang dinyatkan dalam struktur 3 dimensi. Penentuan konfigurasi R/S dengan kaidah tangan kanan merupakan penetuan konfigurasi R/S yang merupakan metode yang dikembangkan oleh Cahn-Ingold-Prelog. Di samping itu ada metode penentuan konfigurasi R/S dengan aturan perkalian. Metode yang disebutkan terakhir tidak menuntuk daya nalar keruangan.

Penetapan Konfigurasi Sistem (  ) atau(  )

·         Bayangkan molekul dalam bentuk 3D, putarmolekul hingga gugus berprioritas rendahberada di belakang.

·         Gambar panah dari gugus berprioritas palingtinggi ke rendah.

·         Searah jarum jam = (R ), berlawanan jarum jam = (S) =>





Pengaturan yang tepat dari substituen di sebuah pusat stereogenik dikenal sebagai konfigurasi mutlak molekul. Hal ini biasanya dicapai dengan memecahkan struktur kristal x-ray dari molekul, metode yang tidak selalu tersedia, atau dengan kesimpulan berdasarkan reaksi kimia dari stereokimia tertentu yang melibatkan senyawa yang konfigurasi mutlak diketahui.

Susunan atom dalam molekul optik aktif, berdasarkan interkonversi kimia dari atau ke senyawa yang dikenal, adalah konfigurasi relatif. Relatif, karena tidak ada cara untuk mengetahui hanya dengan melihat struktur apakah penugasan (+) atau (-) berkorelasi dengan isomer tertentu, R atau S.

B.     Konfigurasi relatif
konfigurasi relatif dapat dibentuk dengan cara kimia melalui reaksi di mana konfigurasi di pusat kiral yang menarik adalah baik tidak berubah atau terbalik stereospecifically. Sebagai contoh, pertimbangkan urutan reaksi yang ditunjukkan pada dimana konfigurasi (+) - asam laktat berkaitan dengan asam amino (+) - alanin. Karena (+) - asam laktat telah berhubungan dengan L - (-) - gliseraldehida, maka bahwa konfigurasi mutlak L - (+) - asam laktat dan L - (+) – alanin . Ketika ada beberapa karbon kiral dalam suatu molekul, konfigurasi pada satu pusat biasanya berhubungan langsung atau tidak langsung untuk gliseraldehida, dan konfigurasi di pusat-pusat lainnya relatif bertekad untuk yang pertama. Dengan demikian dalam bentuk aldehida gula penting, (+) - glukosa, ada empat pusat kiral, dan jadi ada 24 = 1624 = 16 stereoisorners mungkin. Proyeksi rumus isomer yang sesuai dengan bentuk aldehida glukosa alami.

Namun, konfigurasi dari-asam amino yang memiliki lebih dari satu karbon kiral ditentukan oleh karbon kiral terendah-nomor, yang merupakan alpha karbon ke grup karboksil. Dengan demikian, meskipun alam a-amino acid, treonin, memiliki jenis yang sama persis pengaturan substituen sebagai gula alami, threose, treonin oleh konvensi asam amino milik L-series, sedangkan threose oleh konvensi gula milik ke D-series:

Sebuah ambiguitas serius timbul untuk senyawa seperti asam tartaric aktif. Jika konvensi asam amino yang digunakan, (+) - asam tartarat jatuh di seri D; oleh konvensi gula, ia memiliki konfigurasi L. Salah satu jalan keluar dari dilema ini adalah dengan menggunakan subskrip ss dan gg untuk menunjukkan asam amino atau karbohidrat konvensi, masing-masing. Kemudian konfigurasi mutlak (+) - asam tartrat dapat ditunjuk sebagai salah DSDS - (+) - asam tartrat dari LGLG - (+) - asam tartarat.


2.     Pemisahan campuran Rasemik
Campuran rasemik artinya suatu campuran yang mengandung sepasang enantiomer dalam jumlah yang sama. Sepasang enentiomer itu adalah enantiomer R dan enentiomer S.
Sebagian masyarakat mungkin kurang memperhatikan sifat optis suatu senyawa organik, padahal reaksi kimia dalam sistem biologis makhluk hidup sangat stereospesifik. Artinya suatu stereoisomer akan menjalani reaksi yang berbeda dengan stereoisomer pasangannya dalam sistem biologis makhluk hidup. Bahkan terkadang suatu stereoisomer akan menghasilkan produk yang berbeda dengan stereoisomer pasangannya dalam sistem biologis makhluk hidup.
Dalam kebanyakan reaksi di laboratorium, seorang ahli kimia menggunakan bahan baku akiral ataupun rasemik dan memperoleh produk akiral dan rasemik. Oleh karena itu sering kiralitas (atau tiadanya kiralitas) pereaksi dan produk diabaikan dalam bab-bab berikutnya.
Berlawanan dengan reaksi kimia di laboratorium, kebanyakan reaksi biologis mulai dengan pereaksi kiral atau akiral dan menghasilkan produk-produk kiral. Reaksi biologis ini dimungkinkan oleh katalis biologis yanh disebut enzim, yang bersifat kiral. Ingat bahwa sepasang enantiomer mempunyai sifat-sifat kimia yang sama kecuali dalam hal antraksi dengan zat-zat kiral lain. Karena enzim bersifat kiral, maka enzim dapat sangat selektif dalam keguatan katalitiknya. Misalnya, bila suatu organisme mencerna suatu campuran alanina rasemik maka hanya (S)-alanina ang tergabung ke dalam bangunan protein. (R)-alanina tidak digunakan dalam protein, malahan alanina oni dengan bantuan enzim lain dioksidasi menjadi suatu asam keto serta memasuki bagan metabolisme lain.
Dalam laboratorium pemisahan fisis suatu campuran rasemik menjadi enantiomer-enantiomer murni disebut resolusi (atau resolving) campuran rasemik itu. Pemisahan natrium amonium tartarat rasemik oleh Pasteur adalah suatu resolusi campuran tersebut. Enantiomer-enantiomer yang mengkristal secara terpisah merupakan gejala yang sangat jarang, jadi cara Pasteur tidak dapat dianggap sebagai suatu teknik yang umum. Karena sepasang enantiomer itu menunjukkan sifat-sifat fisika dan kimia yang sama, maka tidak dapat dipisahkan dengan cara kimia atau fisika biasa. Sebagai gantinya, ahli kimia terpaksa mengandalkan reagensia kiral atau katalis kiral (yang hampir selalu berasal dari dalam organisme hidup).
Suatu cara untuk memisahkan campuran rasemik atau sekurangnya mengisolasi enantiomer murni adalah mengolah campuran itu dengan suatu mikroorganisme yang hanya akan mencerna salah satu dari enantiomer itu. Misalnya (R)- nikotina murni dapat diperoleh dari (R)(S)- nikotina dengan menginkubasi campuram rasemik itu dengan bakteri Pseudomonas Putida yang mengoksidasi (S)- nikotina tetapi tidak (R)-enantiomer.


Senin, 03 Oktober 2016

pertemuan ke-6 STEREOKIMIA


STEREOKIMIA

 Stereokimia yaitu ilmu yang menggali tentang molekul-molekul dalam ruang tiga dimensi, artinya bagaimana atom-atom dalam sebuah molekul diatur dalam ruang satu terhadap ruang yang lainnya.aspek aspek dalam stereokimia yaitu :
1.      Isomer geometric : bagaimana ketegaran atau rigidity dalam molekul dapat     mengakibatkan isomeri
2.      Konformasi molekul : bentuk molekul dan bagaimana bentuk ini dapat diubah
3.      Kiralitas (chirality) molekul : bagaimana penataan kiri atau kanan atom-atom disekitar atom karbon dapat mengakibatkan isomeri.

A.    ISOMERI GEOMETRI DALAM ALKENA DAN SENYAWA SIKLIK
1.isomer geometri dalam alkena
 isomerisme cis dan trans atau atau isomerisme geometrik  atau isomerisme konfigurasi adalah sebuah bentuk stereoisomer yang menjelaskan orientasi gugus gugus fungsi dalam sebuah molekul. Secara umum, isomer seperti ini mempunyai ikatan rangkap yang tidak dapat berputar. Selain itu, isomer ini juga muncul dikarenakan struktur cincin molekul yang menyebabkan perputaran ikatan sangat terbatas.
Istilah "isomerisme geometrik" adalah istilah lama yang sudah tidak digunakan lagi dan merupakan sinonim dari "isomerisme cis-trans". Ia kadang-kadang juga merupakan sinonim untuk stereoisomerisme umum (misalnya isomerisme optis); istilah yang tepat untuk stereoisomerisme non-optis adalah diastereomerisme.
Terdapat dua bentuk isomer cis-trans, yakni cis dan trans Ketika gugus substituen berorientasi pada arah yang sama, diastereomer ini disebut sebagai cis, sedangkan ketika subtituen berorientasi pada arah yang berlawanan, diastereomer ini disebut sebagai trans. Contoh molekul hidrokarbon yang menunjukkan isomerisme cis-trans adalah 2-butena senyawa yang mengandung ikatan rangkap (seperti alkena), ikatan rangkap tersebut akan bersifat kaku sehingga tidak dapat berputar karena ikatan rangkap ini tidak dapat berputar, maka ketika ada dua senyawa yang memiliki struktur berbeda, itu artinya kedua senyawa tersebut memang merupakan dua senyawa yang berbeda sifat. Dengan kata lain, dua senyawa tersebut adalah isomer satu sama lain.

Isomer geometri dalam Alkena (Cis dan Trans). Diakibatkan oleh ketegarandalam molekul. Dijumpai dalam dua kelas senyawa: alkena dan senyawa siklik.Senyawa yang mempunyai ikatan rangkap tak dapat berputar dengan ikatanrangkap sebagai sumbunya, tanpa mematahkan ikatan pi nya.
 Karena kekakuanikatan pi, gugus-gugus yang terikat pada ikatan pi terletak tetap dalam ruang relatifsatu sama lain.Syarat isomer geometri dalam alkena, yaitu tiap atom karbon yang terlibatdalam ikatan pi mengikat dua gugus yang berlainan, misalnya H dan Cl. Jika salahsatu atom karbon berikatan rangkap itu mempunyai dua gugus identik, misalny adua atom H atau dua gugus CH3 maka tak mungkin terjadi isomeri geometri.
A.    Sistem Tata Nama (E) dan (Z)
Aturan Penandaan E dan Z untuk membedakan isomer alkena dengan duasubstituen dapat kita gunakan istilah cis-trans.



Jika substituen dengan prioritas yang sama berposisi sama maka diberi tanda Z ( Zussamen) sedangkan jika posisinya berlawanan diberi tanda E ( Entgegen).Aturan yang digunakan untuk memberikan urutan prioritas disebut aturan Cahn-Ingold-Prelog (diambil dari nama ilmuwan yang menemukannya). Aturan-aturan tersebut adalah sebagai berikut: Aturan 1 : Lihat pada atom yang terikatlangsung pada karbon ikatan rangkap lalu urutkan substituen tersebut berdasarkannomor atomnya.


Klorin memiliki nomor atom lebih besar dibandingkan karbon, sehinggasubstituen Cl menerima prioritas lebih tinggi dibandingkan metil.Aturan 2 : Jika pengurutan prioritas tidak dapat dilakukan menggunakan atom pertama yang terikat langsung pada karbon ikatan rangkap maka gunakan prioritasatom berikutnya. Substituen -CH2 CH3 dan – CH3 memiliki prioritas yang sama jikadigunakan aturan 1 karena kedua atom yang terikat langsung pada karbon ikatanrangkap adalah atom karbon juga. Dengan aturan 2, gugus etil menerima prioritaslebih tinggi dari pada metil karena etil memiliki prioritas lebih tinggi pada atomkedua. Atom karbon yang terikat pada karbon ikatan rangkap, masih mengikat satukarbon lain, sedangkan atom kedua pada gugus metil adalah hidrogen.

B.     Aturan Deret
Aturan deret untuk prioritas :
1.      Jika atom-atom yang dipermasalahkan berbeda-beda, maka urutanderet ditentukan oleh nomor atom. Atom dengan nomor atom tinggimemperoleh prioritas.F < Cl < Br < ISemakin tinggi nomor atom, maka prioritas semakin naik.

2.       Jika atom-atom itu adalah isotop satu sama lain, maka isotop dengannomor massa tinggi memperoleh prioritas.H D Nomor massa 1 < 23)

3.      Jika kedua atom tersebut identik, maka nomor atom dari atom-atom berikutnya digunakan untuk memberikan prioritas. Jika atom-atom tersebut juga mengikat atom-atom identik, maka prioritas ditentukan pada titik pertamakali dijumpai perbedaan dalam menyusuri rantai. Atom yang mengikat suatuatom dengan prioritas tinggi akan diprioritaskan (jangan menjumlakan nomor-nomor atom, melainkan mencari atom tunggal yang berprioritas tinggi).4)

4.      Atom-atom yang terikat oleh ikatan rangkap atau ikatan ganda tigadiberi kesetaraan (equivalenceis) ikatan tunggal, sehingga atom-atom ini dapatdiperlakukan sebagai gugus-gugus berikatan tunggal, dalam menentukan prioritas. Tiap atom berikatan rangkap diduakalikan (atau ditigakalikan untukikatan ganda tiga).

2.isomer geometric dalam senyawa siklik


                                  

       alkana asikloik(rantai terbuka) dengan sikloalkana memiliki sifat kimia yang mirip. Keduanya sama-sama non polar dan cenderung inert. Akan tetapiterdapat perbedaan mendasar Pertama, sikloalkana kurang fleksibel dibandingkandengan alkana rantai terbuka. Ikatan tunggal (ikatan sigma) pada alkana asliklikdapat berputar.Pada sikloalkana, ikatan yang terbentuk kurang bebas untuk berputar.Misalnya siklopentana, bentuknya adalah segitiga rigid dan planar. Putaran padaikatan karbon-karbon tidak mungkin terjadi tanpa merusak cincin.

karena strukturnya yang siklik, sikloalkana memiliki dua sisi yaitu sisi atas dan bawah. Hal ini memungkinakn sikloheksana memiliki kemungkinanisomerisme berdasarkan letak substituennya. Contohnya, ada dua bentuk isomerdari 1,2-dimetilsiklopropana. Pertama dengan dua gugus metil pada sisi yang sama,kedua dengan gugus metil pada posisi yang berlawanan. Kedua bentuk isomermerupakan molekul yang stabil, dan dapat dikonfersi dari bentuk satu ke bentuklainnya tanpa memecah cincin atau tanpa membentuk ikatan baru.

B.KONFORMASI DAN KIRALITAS SENYAWA TERBUKA
1. Konformasi senyawa terbuka
            Gugus-gugus fungsi yangterikat pada ikatan karbon-karbon dalam senyawa alkana dapat berotasi dengan bebasmengelilingi ikatan tersebut. Oleh karena itu atom-atom dalam suatu senyawa rantai terbuka dapat memiliki posisi yang tak terhingga banyaknya di dalam ruang relatifsatu terhadap yang lain. Pengaturan posisi atom yang bervariasi/berbeda-beda yangdiakibatkan oleh rotasi ini disebut konformasi.Untuk menggambarkan konformasi, digunakan tiga jenis rumus yaitu  :
1. Rumus dimensional
2. Rumus bola-dan-pasak
3. Proyeksi Newman

terbuka dapat memiliki posisi yang tak terhingga banyaknya di dalam ruang relatifsatu terhadap yang lain. Pengaturan posisi atom yang bervariasi/berbeda-beda yangdiakibatkan oleh rotasi ini disebut konformasi.Untuk menggambarkan konformasi, digunakan tiga jenis rumus yaitu :1. Rumus dimensional2. Rumus bola-dan-pasak3. Proyeksi NewmanProyeksi Newman adalah pandangan ujung ke ujung dari dua atom karbon sajadalam molekul itu, sementara ikatan antar karbon tidak terlihat. Ketiga ikatan darikarbon depan tampak menuju pusat proyeksi sementara ketiga ikatan dari karbon belakang hanya tampak sebagian.

2. kiralitas senyawa rantai terbuka
Istilah kiral berasal dari kata Yunani χειρ (kheir ) yang berarti tangan. Istilah kiral secara umum digunakan untuk menggambarkan suatobjekyang tidak dapat bertumpukan secara pas pada bayangannya. Akiral (tidak kiral) adalah benda yangidentik dengan bayangan cermin. Untuk mempelajari kiralitas, dapat menggunakantangan manusia sebagai perumpaaan. 


Molekul kiral yang saling mempunyai bayangan cermin satu sama lain disebutdengan enantiomer atau isomer optic Molekul kiral adalah molekul yang mempunyai bayangan cermin tidaksuperimposabel(tidak dapat bertumpukan).Yang menyebabkan adanya kiralitas adalah adanya senyawa karbon yang tidak simetris. 

Senin, 26 September 2016

pertemuan ke-5 ISOMERI STRUKTUR SENYAWA HIDROKARBON DAN SISTEM NOMENKLATUR


ISOMERI STRUKTUR SENYAWA HIDROKARBON DAN SISTEM NOMENKLATUR

1 . SISTEM NOMENKLATUR

Tatanama atau nomenklatur (bahasaInggris: nomenclature) berasal dari bahasa Latin : nomen untuk penamaan atau calare bagi sebuah penyebutan dalam bahasa Yunani:ονοματοκλήτωρ yang berasal dari kata όνομα atau onoma yang sama berarti dengan bahasa Inggris kuno :nama dan bahasa Jerman kuno : namo adalah merujuk pada persyaratan, sistem prinsip-prinsip dasar, prosedur dan persyaratan yang berkaitan dengan penamaan yang dapat merupakan pembakuan kata atau frasa penugasan untuk objek tertentu.
            Pada pertengahan abad 19 , banyak senyawa organic yang tak diketahui strukturnya.pada waktu itu nama nama senyawa bersifat ilustratif,yakni menyiratkan asal usul atau sifatnya.beberapa senyawa dinamai menurut nama sahabat atau kerabat ahli kimia yang pertama mengemukakan senyawa itu.misalnya nama asam barbiturate (dari situ dikenal kelompok obat barbiturate) beraal dari nama wanita Barbara.
           
         Bahkan sekarang ini direka-reka nama-nama trivial untuk senyawa baru,terutama senyawa dengan nama resmi yang bertele-tele.berikut tiga contoh nama senyawa organic yang mengerikanMenghadapi meledaknya jumlah senyawa oganik,masing masing dengan nama kuno dan aneh,pada akhir abaqd ke-19 ahli kimia organic memutuskan untuk mensistematikan tata nama organic untuk menghubungkan nama-nama senyawa dan strukturnya.sistem tata nama yang telah dikembangkan disebut Nama jenewa atau sistem IUPAC.konferensi  tatanama diadakan di jenwa.IUPAC ialah inisial dari international union of pure and applied chemistry.organisasi yang betanggung jawab meneruskan perkembangan tata nama kimia.sistem tata nama lain yang dihubungkan dengan nama iupac ,dewasa computer.namun semua sistem formal tata nama sangatlah mirip.

Untuk komunikasi umum dan menghindari deskripsi yang panjang, rekomendasi penamaan resmi IUPAC tidak selalu diikuti dalam praktiknya kecuali jika diperlukan untuk memberikan definisi ringkas terhadap suatu senyawa atau jika nama IUPAC lebih sederhana (bandingkan etanol dengan etil alkohol). Jika tidak, maka nama umum atau nama trivial yang biasanya diturunkan dari sumber senyawa tersebutlah yang digunakan.

Pada kebanyakan senyawa, penamaan dapat dimulai dengan menentukan rantai hidrokarbon Ingold Prelog jika ambiguitas masih saja ada pada struktur rantai hidrokarbon induk. Nama dari rantai induk dimodifikasi dengan akhiran gugus fungsi yang memiliki prioritas tertinggi, sedangkan gugus fungsi sisanya diindikasikan dengan awalan yang dinomori dan disusun secara alfabetis.
Dalam kebanyakan kasus, penamaan yang tidak mengikuti kaidah penamaan yang baik dan benar bisa menghasilkan nama yang masih bisa dimengerti strukturnya - tentu saja penamaan yang baik dan benar direkomendasikan untuk menghindari ambiguitas.

2.      ISOMER STRUKTURAL
Dua senyawa atau lebih yang memiliki rumus molekul yang sama disebut isomer satu terhadap yang lain.jika senyawa senyawa dengan rumus molekul yang sama itu memiliki urutan atom yang berlainan,maka mereka mempunyai struktur(bangun) yang berlainan isomer structural satu sama lain.
Sebagai contoh, ada dua isomer struktural dengan sama rumus kimia C4H10, CH3CH2CH2CH3 butana yaitu normal dan metilpropana (CH3)2CHCH2CH3. Sangat menarik untuk dicatat butana yang normal mendidih pada -0.5 derajat Celsius, sedangkan metilpropana mendidih pada suhu 28 derajat Celcius. Karena jumlah atom bertambah, jumlah isomer meningkat. Ada tiga isomer struktural dengan rumus kimia C5H12, lima dengan rumus C6H14 dan sembilan dengan rumus C7H16.
 Isomer struktural karbon tidak dibatasi hanya untuk karbon dan hidrogen, meskipun mereka adalah contoh paling terkenal dari isomer struktural.

Di lemari obat rumah tangga orang dapat menemukan C3H8O, atau isopropil alkohol, kadang-kadang diidentifikasi sebagai “alkohol.” Rumus struktur adalah CH3CH (OH) CH3. Selain itu, ada n-propil alkohol, CH3CH2CH2 (OH) dan bahkan eter metiletil, CH3OCH2CH3, meskipun tak satu pun dari kedua senyawa ini kemungkinan akan ditemukan di rumah. Juga ada isomer struktural senyawa karbon yang mengandung atom lain. Apa yang membuat kelimpahan bentuk seperti isomer yang mungkin adalah kemampuan atom dari beberapa unsur – terutama karbon – untuk bergabung satu sama lain.
Hal ini disebabkan sifat dari ikatan antara atom. Atom karbon yang berdekatan bergabung dengan ikatan kovalen, ikatan di mana atom yang berpartisipasi berbagi elektron yang sama, daripada memindahkannya dari satu atom ke yang lain. Sebagai gambaran, dalam garam meja biasa, NaCl, atom natrium ikut serta memberikan lebih dari satu elektron yang tersedia untuk atom klor, dan dua atom tertarik gaya elektrostatis. Hal seperti ini ada antara atom karbon yang bergabung dalam etana, C2H6.  
 Silikon dan boron memiliki kemampuan yang sama untuk mengikat satu sama lain tanpa transfer elektron. Isomer struktural silikon dan boron diilustrasikan dengan baik dalam silan – senyawa silikon dan hidrogen – dan boran – senyawa boron dan hidrogen. Senyawa karbon dan hidrogen mulai dengan molekul metana, CH4. Analog dengan hal ini, senyawa silikon dan hidrogen dimulai dengan silan, SiH4. Menariknya, senyawa boron dan hidrogen mulai berbeda dengan borana, BH3 – senyawa yang dikenal hanya dalam bentuk gas yang cepat dimerizes untuk membentuk B2H6.
Kemampuan untuk membentuk isomer struktural sangat meningkatkan jumlah senyawa yang mungkin dengan berbagai sifat hampir tak berujung. Dalam kasus karbon, isomer struktural memungkinkan senyawa kehidupan. Untuk silikon dan boron, berbagai besar senyawa memberi dunia ilmiah dan manufaktur sejumlah besar reagen. Salah satu aplikasi dari turunan silan dalam lapisan yang memungkinkan bahan-bahan biologis berbahaya harus terpasang ke struktur implan titanium. Adapun boran, mereka dapat digunakan dalam sintesis organik khusus, dalam sel bahan bakar yang eksotis, dan bahkan untuk bahan bakar peroketan.
·                  Jenis-Jenis  Isomer Struktur
1.    Isomer rantai
Isomer ini muncul karena kemungkinan percabangan rantai karbon. Sebagai contoh, ada dua isomer dari butana, C4H10. Dalam salah satu dari mereka, atom karbon terletak pada “rantai lurus” sedangkan yang lain rantai bercabang.

2   2.    Isomer posisi
         Dalam isomer posisi , kerangka karbon dasar tetap tidak berubah, namun kelompok-kelompok penting yang berpindah-pindah pada kerangka itu.
Sebagai contoh, ada dua isomer struktural dengan rumus molekul C3H7Br. Dalam salah satu dari mereka atom bromin di ujung rantai, sedangkan yang lain itu melekat di tengah.

Jika Kita membuat model, tidak ada cara yang Kita bisa memutar satu molekul untuk mengubahnya menjadi yang lain. Kita harus memecahkan bromin di bagian akhir dan pasang kembali di tengah. Pada saat yang sama, Kita harus memindahkan hidrogen dari tengah sampai akhir.

Contoh lain yang serupa terjadi pada alkohol seperti C4H9OH
Ini adalah hanya dua kemungkinan asalkan Kita menjaga rantai empat karbon, tetapi tidak ada alasan mengapa Kita harus melakukan itu. Kita dapat dengan mudah memiliki campuran rantai Isomer dan posisi isomer – Kita tidak terbatas pada satu atau yang lain.
Kita juga bisa mendapatkan isomer posisi pada cincin benzena. Pertimbangkan rumus molekul C7H7Cl. Ada empat isomer berbeda Kita bisa membuat tergantung pada posisi atom klorin. Dalam satu kasus itu melekat pada atom karbon samping kelompok, dan kemudian ada tiga kemungkinan posisi lain bisa memiliki sekitar ring – samping grup CH3, next-tapi-satu untuk kelompok CH3, atau sebaliknya kelompok CH3 .

3     3.  IsomerFungsional

Dalam berbagai ini isomer struktural, isomer mengandung gugus fungsional yang berbeda – yaitu, mereka milik keluarga yang berbeda dari senyawa (seri homolog yang berbeda).

Sebagai contoh, rumus molekul C3H6O dapat berupa propanal (aldehid) atau propanon (keton).Ada kemungkinan lain juga untuk formula ini molekul yang sama – misalnya, Kita bisa memiliki ikatan karbon-karbon gkita (alkena) dan -OH (alkohol) dalam molekul yang sama.
Contoh lainnya digambarkan dengan rumus C3H6O2 molekul. Di antara beberapa isomer struktural ini asam propanoat (asam karboksilat) dan metil etanoat (ester).

3 .ISOMER PADA ALKANA
Struktur alkana dapat berupa rantai lurus atau rantai bercabang. Alkana yang mengandung tiga atom karbon atau kurang tidak mempunyai isomer seperti CH4, C2H6 dan C3H8 karena hanya memiliki satu cara untuk menata atom-atom dalam struktur ikatannya sehingga memilki rumus molekul dan rumus struktur molekul sama. Perhatikan gambar di bawah ini:


Dalam senyawa alkana juga ada yang rumus molekulnya sama, tetapi rumus struktur molekulnya berbeda. Mulai dari alkana dengan rumus molekul C4H10mempunyai dua kemungkina struktur ikatan untuk menata atom-atom karbonnya seperti di bawah ini:

Untuk senyawa-senyawa tersebut disebut isomer. Oleh karena perbedaan hanya pada kerangka struktur maka isomernya disebut isomer kerangka.
Untuk pentana (C5H12) memiliki tiga kemungkinan struktur ikatan untuk menata atom-atom karbonnya yaitu:

Kita dapat menyimpulkan dari 2 contoh di atas bahwa semakin bertambah jumlah atom C pada rumus molekul suatu alkana maka semakin banyak isomernya seperti yang tertera ditabel bawah ini:


Jumlah atom C
C4
C5
C6
C7
C8
C9
C10
Rumus molekul
C4H10
C5H12
C6H14
C7H16
C8H18
C9H20
C10H22
Jumlah isomer
2
3
5
9
18
35
75

TUGAS TAMBAHAN

Soal :  mengapa sudut ikatan H-C-H lebih kecil dari H-C-C?

jawab:
Pada posisi tereksitasi,atom  karbon memiliki empat elektron tak berpasangan dan dapat membentuk empat ikatan dengan hidrogen  Meskipun membutuhkan energi sebesar 96 kkal/mol untuk mengeksitasi satu elektronnya terlebih dahulu, ikatan yang terbentuk dengan H (pada CH4) jauh lebih stabil dibandingkan ikatan C-H pada molekul CH2. Ikatan C-H pada metana memiliki kekuatan ikatan 104 kkal/mol dengan panjang ikatan 1.10 A. sudut ikatan H-C-H sebesar 109.5 Panjang ikatan hidrogen-karbon sebesar 1.06A dan panjang ikatan karbon-karbon adalah 1.20 A